Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Physiol Endocrinol Metab ; 325(1): E10-E20, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37196059

RESUMEN

Metabolic dysfunction-associated fatty liver disease (MAFLD) represents a growing cause of mortality and morbidity and encompasses a spectrum of liver pathologies. Although dozens of preclinical models have been developed to recapitulate stages of MAFLD, few achieve fibrosis using an experimental design that mimics human pathogenesis. We sought to clarify whether the combination of thermoneutral (TN) housing and consumption of a classical Western diet (WD) would accelerate the onset and progression of MAFLD. Male and female C57Bl/6J mice were fed a nutrient-matched low-fat control or Western diet (WD) for 16 wk. Mice were housed with littermates at either standard temperature (TS; 22°C) or thermoneutral-like conditions (TN; ∼29°C). Male, but not female, mice housed at TN and fed a WD were significantly heavier than TS-housed control animals. WD-fed mice housed under TN conditions had lower levels of circulating glucose compared with TS mice; however, there were select but minimal differences in other circulating markers. Although WD-fed TN males had higher liver enzyme and higher liver triglyceride levels, no differences in markers of liver injury or hepatic lipid accumulation were observed in females. Housing temperature had little effect on histopathological scoring of MAFLD progression in males; however, although female mice retained a level of protection, WD-TN conditions trended toward a worsened hepatic phenotype, which was associated with higher macrophage transcript expression and content. Our results indicate that interventions coupling TN housing and WD-induced MAFLD should be longer than 16 wk to accelerate hepatic steatosis and increase inflammation in both sexes of mice.NEW & NOTEWORTHY Mouse models leading to accelerated fatty liver onset are a useful translational tool. Here we show that coupling thermoneutral-like housing and Western diet feeding in mice for 16 wk does not lead to significant disease progression in either sex, though the molecular phenotype indicates priming of immune-related and fibrotic pathways.


Asunto(s)
Vivienda , Enfermedad del Hígado Graso no Alcohólico , Humanos , Femenino , Masculino , Animales , Ratones , Ratones Endogámicos C57BL , Dieta Occidental/efectos adversos , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Hígado/metabolismo , Fibrosis
2.
iScience ; 26(5): 106748, 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37216093

RESUMEN

Mice systemically lacking dipeptidyl peptidase-4 (DPP4) have improved islet health, glucoregulation, and reduced obesity with high-fat diet (HFD) feeding compared to wild-type mice. Some, but not all, of this improvement can be linked to the loss of DPP4 in endothelial cells (ECs), pointing to the contribution of non-EC types. The importance of intra-islet signaling mediated by α to ß cell communication is becoming increasingly clear; thus, our objective was to determine if ß cell DPP4 regulates insulin secretion and glucose tolerance in HFD-fed mice by regulating the local concentrations of insulinotropic peptides. Using ß cell double incretin receptor knockout mice, ß cell- and pancreas-specific Dpp4-/- mice, we reveal that ß cell incretin receptors are necessary for DPP4 inhibitor effects. However, although ß cell DPP4 modestly contributes to high glucose (16.7 mM)-stimulated insulin secretion in isolated islets, it does not regulate whole-body glucose homeostasis.

3.
JCI Insight ; 8(2)2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36472923

RESUMEN

Elevated circulating dipeptidyl peptidase-4 (DPP4) is a biomarker for liver disease, but its involvement in gluconeogenesis and metabolic associated fatty liver disease progression remains unclear. Here, we identified that DPP4 in hepatocytes but not TEK receptor tyrosine kinase-positive endothelial cells regulates the local bioactivity of incretin hormones and gluconeogenesis. However, the complete absence of DPP4 (Dpp4-/-) in aged mice with metabolic syndrome accelerates liver fibrosis without altering dyslipidemia and steatosis. Analysis of transcripts from the livers of Dpp4-/- mice displayed enrichment for inflammasome, p53, and senescence programs compared with littermate controls. High-fat, high-cholesterol feeding decreased Dpp4 expression in F4/80+ cells, with only minor changes in immune signaling. Moreover, in a lean mouse model of severe nonalcoholic fatty liver disease, phosphatidylethanolamine N-methyltransferase mice, we observed a 4-fold increase in circulating DPP4, in contrast with previous findings connecting DPP4 release and obesity. Last, we evaluated DPP4 levels in patients with hepatitis C infection with dysglycemia (Homeostatic Model Assessment of Insulin Resistance > 2) who underwent direct antiviral treatment (with/without ribavirin). DPP4 protein levels decreased with viral clearance; DPP4 activity levels were reduced at long-term follow-up in ribavirin-treated patients; but metabolic factors did not improve. These data suggest elevations in DPP4 during hepatitis C infection are not primarily regulated by metabolic disturbances.


Asunto(s)
Hepatitis C , Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Glucosa/metabolismo , Péptido 1 Similar al Glucagón/metabolismo , Dipeptidil Peptidasa 4/metabolismo , Células Endoteliales/metabolismo , Ribavirina/metabolismo , Hepatocitos/metabolismo
4.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1867(11): 159208, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35926775

RESUMEN

The small intestine is a highly adaptable organ serving as both a barrier to the external environment and a conduit for nutrient absorption. Enterocytes package dietary triglycerides (TG) into chylomicrons for transport into circulation; the remaining TGs are stored in cytosolic lipid droplets (CLDs). The current study aimed to characterize the impact of diet composition on intestinal lipid handling in male and female wild-type mice. Mice were continued on their grain-based diet (GBD) and switched to either a high-fat, high cholesterol Western-style diet (WD) or a ketogenic diet (KD) for 3 or 5 weeks. KD-fed mice displayed significantly higher plasma TG levels in response to an olive oil gavage than WD- and GBD-fed mice; TG levels were ~2-fold higher in male KD-fed mice than female KD-fed mice. Poloxamer-407 experiments revealed enhanced intestinal-TG secretion rates in male mice fed a KD upon olive oil gavage, whereas secretion rates were unchanged in female mice. Surprisingly, jejunal CLD size and TG mass after oil gavage were similar among the groups. At fasting, TG mass was significantly higher in the jejunum of male KD-fed mice and the duodenum of female KD-fed mice, providing increased substrate for chylomicron formation. In addition to greater fasting intestinal TG stores, KD-fed male mice displayed longer small intestinal lengths, while female mice displayed markedly longer jejunal villi lengths. After 5 weeks of diet, 12 h fasting-2 h refeeding experiments revealed jejunal TG levels were similar between diet groups in male mice; however, in female mice, jejunal TG mass was significantly higher in KD-fed mice compared to GBD- and WD-fed mice. These experiments reveal that KD feeding promotes distinct morphological and functional changes to the murine small intestine compared to the WD diet. Moreover, changes to intestinal lipid handling in response to carbohydrate and protein restriction manifest differently in male and female mice.


Asunto(s)
Quilomicrones , Enterocitos , Animales , Quilomicrones/metabolismo , Dieta Alta en Grasa , Enterocitos/metabolismo , Femenino , Masculino , Ratones , Aceite de Oliva/metabolismo , Triglicéridos/metabolismo
5.
Am J Physiol Heart Circ Physiol ; 322(3): H359-H372, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34995167

RESUMEN

Ischemic heart disease is the leading cause of death in the United States, Canada, and worldwide. Severe disease is characterized by coronary artery occlusion, loss of blood flow to the myocardium, and necrosis of tissue, with subsequent remodeling of the heart wall, including fibrotic scarring. The current study aims to demonstrate the efficacy of quantitating infarct size via two-dimensional (2-D) echocardiographic akinetic length and four-dimensional (4-D) echocardiographic infarct volume and surface area as in vivo analysis techniques. We further describe and evaluate a new surface area strain analysis technique for estimating myocardial infarction (MI) size after ischemic injury. Experimental MI was induced in mice via left coronary artery ligation. Ejection fraction and infarct size were measured through 2-D and 4-D echocardiography. Infarct size established via histology was compared with ultrasound-based metrics via linear regression analysis. Two-dimensional echocardiographic akinetic length (r = 0.76, P = 0.03), 4-D echocardiographic infarct volume (r = 0.85, P = 0.008), and surface area (r = 0.90, P = 0.002) correlate well with histology. Although both 2-D and 4-D echocardiography were reliable measurement techniques to assess infarct, 4-D analysis is superior in assessing asymmetry of the left ventricle and the infarct. Strain analysis performed on 4-D data also provides additional infarct sizing techniques, which correlate with histology (surface strain: r = 0.94, P < 0.001, transmural thickness: r = 0.76, P = 0.001). Two-dimensional echocardiographic akinetic length, 4-D echocardiography ultrasound, and strain provide effective in vivo methods for measuring fibrotic scarring after MI.NEW & NOTEWORTHY Our study supports that both 2-D and 4-D echocardiographic analysis techniques are reliable in quantifying infarct size though 4-D ultrasound provides a more holistic image of LV function and structure, especially after myocardial infarction. Furthermore, 4-D strain analysis correctly identifies infarct size and regional LV dysfunction after MI. Therefore, these techniques can improve functional insight into the impact of pharmacological interventions on the pathophysiology of cardiac disease.


Asunto(s)
Infarto del Miocardio/diagnóstico por imagen , Ultrasonografía/métodos , Algoritmos , Animales , Gasto Cardíaco , Femenino , Ventrículos Cardíacos/diagnóstico por imagen , Ventrículos Cardíacos/patología , Ventrículos Cardíacos/fisiopatología , Imagenología Tridimensional/métodos , Imagenología Tridimensional/normas , Masculino , Ratones , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Sensibilidad y Especificidad , Ultrasonografía/normas
6.
Arterioscler Thromb Vasc Biol ; 42(2): 127-144, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34911361

RESUMEN

OBJECTIVE: Nobiletin is a dietary flavonoid that improves insulin resistance and atherosclerosis in mice with metabolic dysfunction. Dysregulation of intestinal lipoprotein metabolism contributes to atherogenesis. The objective of the study was to determine if nobiletin targets the intestine to improve metabolic dysregulation in both male and female mice. Approach and Results: Triglyceride-rich lipoprotein (TRL) secretion, intracellular triglyceride kinetics, and intestinal morphology were determined in male and female LDL (low-density lipoprotein) receptor knockout (Ldlr-/-), and male wild-type mice fed a standard laboratory diet or high-fat, high-cholesterol (HFHC) diet ± nobiletin using an olive oil gavage, radiotracers, and electron microscopy. Nobiletin attenuated postprandial TRL levels in plasma and enhanced TRL clearance. Nobiletin reduced fasting jejunal triglyceride accumulation through accelerated TRL secretion and lower jejunal fatty acid synthesis with no impact on fatty acid oxidation. Fasting-refeeding experiments revealed that nobiletin led to higher levels of phosphorylated AKT (protein kinase B) and FoxO1 (forkhead box O1) and normal Srebf1c expression indicating increased insulin sensitivity. Intestinal length and weight were diminished by HFHC feeding and restored by nobiletin. Both fasting and postprandial plasma GLP-1 (glucagon-like peptide-1; and likely GLP-2) were elevated in response to nobiletin. Treatment with a GLP-2 receptor antagonist, GLP-2(3-33), reduced villus length in HFHC-fed mice but did not impact TRL secretion in any diet group. In contrast to males, nobiletin did not improve postprandial lipid parameters in female mice. CONCLUSIONS: Nobiletin opposed the effects of the HFHC diet by normalizing intestinal de novo lipogenesis through improved insulin sensitivity. Nobiletin prevents postprandial lipemia because the enhanced TRL clearance more than compensates for increased TRL secretion.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Flavonas/farmacología , Hiperlipidemias/prevención & control , Metabolismo de los Lípidos/efectos de los fármacos , Sustancias Protectoras/farmacología , Animales , Femenino , Flavonas/uso terapéutico , Hiperlipidemias/sangre , Hiperlipidemias/metabolismo , Intestinos/efectos de los fármacos , Intestinos/metabolismo , Masculino , Ratones Endogámicos C57BL , Periodo Posprandial , Sustancias Protectoras/uso terapéutico , Triglicéridos/sangre , Triglicéridos/metabolismo
7.
J Lipid Res ; 61(12): 1697-1706, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32978273

RESUMEN

The dysregulation of myeloid-derived cell metabolism can drive atherosclerosis. AMP-activated protein kinase (AMPK) controls various aspects of macrophage dynamics and lipid homeostasis, which are important during atherogenesis. Using LysM-Cre to drive the deletion of both the α1 and α2 catalytic subunits (MacKO), we aimed to clarify the role of myeloid-specific AMPK signaling in male and female mice made acutely atherosclerotic by injection of AAV vector encoding a gain-of-function mutant PCSK9 (PCSK9-AAV) and WD feeding. After 6 weeks of WD feeding, mice received a daily injection of either the AMPK activator A-769662 or a vehicle control for an additional 6 weeks. Following this (12 weeks total), we assessed myeloid cell populations and differences between genotype or sex were not observed. Similarly, aortic sinus plaque size, lipid staining, and necrotic area did not differ in male and female MacKO mice compared with their littermate floxed controls. Moreover, therapeutic intervention with A-769662 showed no treatment effect. There were also no observable differences in the amount of circulating total cholesterol or triglyceride, and only minor differences in the levels of inflammatory cytokines between groups. Finally, CD68+ area and markers of autophagy showed no effect of either lacking AMPK signaling or AMPK activation. Our data suggest that while defined roles for each catalytic AMPK subunit have been identified, complete deletion of myeloid AMPK signaling does not significantly impact atherosclerosis. Additionally, these findings suggest that intervention with the first-generation AMPK activator A-769662 is not able to stem the progression of atherosclerosis.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Aterosclerosis/terapia , Animales , Aterosclerosis/inmunología , Aterosclerosis/patología , Activación Enzimática , Femenino , Macrófagos/metabolismo , Masculino , Ratones , Transducción de Señal
8.
Clin Med Insights Endocrinol Diabetes ; 13: 1179551420912972, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32231442

RESUMEN

Dipeptidyl peptidase-4 (DPP4) is a serine protease that rapidly inactivates the incretin peptides, glucagon-like peptide-1, and glucose-dependent insulinotropic polypeptide to modulate postprandial islet hormone secretion and glycemia. Dipeptidyl peptidase-4 also has nonglycemic effects by controlling the progression of inflammation, which may be mediated more through direct protein-protein interactions than catalytic activity in the context of nonalcoholic fatty liver disease (NAFLD), obesity, and type 2 diabetes (T2D). Failure to resolve inflammation resulting in chronic subclinical activation of the immune system may influence the development of metabolic dysregulation. Thus, through both its cleavage and regulation of the bioactivity of peptide hormones and its influence on inflammation, DPP4 exhibits a diverse array of effects that can influence the progression of metabolic disease. Here, we highlight our current understanding of the complex biology of DPP4 at the intersection of inflammation, obesity, T2D, and NAFLD. We compare and review new mechanisms identified in basic laboratory and clinical studies, which may have therapeutic application and relevance to the pathogenesis of obesity and T2D.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...